当AI实现多任务学习,它究竟能做什么?
MTL正在越来越多的领域作为一种提高神经网络学习能力的手段被广泛应用。这其实正是AI在众多行业实际应用中的常态化场景。
我们可以最终溯源反思一下,人类之所以能够具有多任务学习的灵活应用的能力,恰恰是因为所处环境正是处在多特征、多噪声的状况之下,这样必然要求我们人类必须能够触类旁通地进行先验的学习能力的迁移。而如果人工智能仅仅停留在单体智能上面,为每一类知识或任务都建立一套单独的模型,最后可能仍然只是一套“人工智障”的机械系统,闹出“白马非马”这类的笑话来。
当AI未来真正既能在融会贯通的方面像人类一样熟练,又能克服人类认知带宽和一些认知偏见,那通向AGI的前路才可能迎来一丝曙光。当然这条路还相当遥远。
本文来自: 脑极体